Zitat:
Zitat von Dyveeen
Woraus ergibt sich das unterschiedliche Verhalten der s- und p-Funktionen für
r->0? Bild zu den Radialfunktionen von Wasserstoff: http://prntscr.com/mbog08
|
Die Grafik gibt die Wellenfunktion

mit dem Ortsvektor r an.
Gut, wir kennen die Schrödingergleichung:
Wobei in deinem H das Potential und die kinetische Energie enthalten sind, hier handelt es sich sehr wahrscheinlich um ein radialsymmetrisches Potential.
Die Wellenfunktionen haben so gesehen keinen physikalische Interpretation nach meinem Wissen, es stellt lediglich die Wahrscheinlichkeitsamplitude dar. Die Aufenthaltswahrscheinlichkeit bekommst du dann durch quadrieren der Wellenfnktionen, Wobei das Kriterium der Normierbarkeit Beachtung finden sollte.
Jetzt zu dem Mysterium warum die Wellenfkt der Orbitale bei r=0 eine NST aufweisen.
Die Wellenfuntkionen liefern wohl Aussagem über die Symmetrien der einzelenen Orbitale, man sieht das s-Orbitale Kugelsymmetrisch sind und p-Orbitale punktsymmetrisch bzw. Achsensymmetrie aufweisen, wenn man sich ein Kreuz vorstellen kann.
Das liegt an der Drehimpulsquantenzahl, die für n=2 beim p-Orbital auch l=1 werden kann, dadurch besitzt das Elektron einen Drehimpuls, die Lösungen der SGL besitzen damit ebenfalls einen winkelabhängigen Anteiteil. l=-1,0,1
Eine weitere Erklärung ist, dass s-Orbital Elektronen durch deren Nähe zum Kern auch einen kleineren Abstand zu diesem besitzen, dadurch erhöht sich die Wahrscheinlichkeit das das Elektron in kürzer Distanz zum Kern gefunden wird. Desweiteren kreisen diese um den Kern innerhalb der Kugelschale. Energetisch höher ligen dann p-Orbiatl Elektronen, diese kreisen nicht um den Kern sondern haben haben Hantelförmige Räume in denen sie sich aufhalten können. Ich denke so kann man sich das auch erklären um zu verstehen wie die jeweiligen Amplituden verlaufen.
Wie am Anfang schon erweähnt, sind das die Lösungen der SGL und beschreiben ziemlich genau (zumindestens im Wasserstoffatom) wie sich die Elektronen wo aufhalten und bewegen dürfen.